21. díl o Arduinu – připojujeme senzor DHT-11

V minulém díle jsme načali sériový monitor a dnes se na něm pokusíme zobrazit první data z čidla. Čidlo, které budeme pro náš pokus používat má označení DHT-11. Tento typ čidla je velmi oblíbený, protože měří teplotu a vlhkost.

IMG_4580

Čidel je pro Arduino celá řada, většina z nich ale potřebuje své vlastní knihovny, které se naštěstí dají stáhnout na mnoha různých webových stránkách, nicméně knihovnu pro dnešní díl jsme si pro vás připravili my. To z toho důvodu, abyste dělali se stejnou knihovnou, protože některé se liší funkcemi či volání funkcí a také proto, že tuto jsme otestovali a je plně funkční.

Knihovny se importují přímo v IDE Arduina. Nahoře v IDE tedy zvolíte z lišty Projekt/import knihovny/přidat knihovnu a vyberete stažený soubor. Pokud byste importovali knihovnu z jiného webu, dbejte na to, aby byla ve formátu .ZIP. Jiný formát Arduino IDE neumí, a tak import není možný.

Čidlo se připojuje velmi jednoduše. Má čtyři piny, ze kterých se používají jen tři. Když se tedy na čidlo podíváte z přední strany, tak od leva jsou to piny pro napájení z 5V, vedle něj pin pro data, třetí pin je neobsazený a poslední, tedy čtvrtý je uzemnění. Ten se tedy připojuje do místa, kde má Arduino GND.

Tedy první pin čidla se připojí na Arduino do místa označené jako 5V, data do některého z digitálních pinů a GND na GND Arduina. Tímto je připojení tedy hotovo a můžete si jej také prohlídnout na fotografiích.

Nyní se ale pustíme do programování. Jako první tedy budeme muset přidat knihovnu pro čidlo DHT a definovat několik vlastností. Tyto první řádky budou umístěny ještě před funkcí loop() či setup(). Je tedy vhodné je umístit hned na začátek souboru.

#include <DHT.h>

#define DHTPIN 50

#define DHTTYPE DHT11

DHT dht(DHTPIN, DHTTYPE);

Pokud budete používat desku Arduino, která je rychlejší, jako je třeba DUE, tak je zapotřebí poslední řádek trochu změnit a to na tento

DHT dht(DHTPIN, DHTTYPE, 30);

Je to z toho důvodu, že deska DUE má rychlejší čip a pokud se tato změna neprovede, budete získávat špatná data ze senzoru, či dokonce žádné nezískáte. Nyní už jen naplníme funkci setup() dvěma řádky, které zahájí sériovou komunikaci a načtou senzor DHT.

Serial.begin(9600);

dht.begin();

Po tomto už jen vypíšeme hodnoty ze senzoru do sériového monitoru. Následující řádky budou umístěny ve funkci loop()

delay(500);

int h = dht.readHumidity();

int t = dht.readTemperature();

if (isnan(h) || isnan(t)) {

Serial.println("Chyba čtení z DHT senzoru!");

return;

}

Serial.print("Vlhkost: ");

Serial.print(h);

Serial.print(" %\t");

Serial.print("Teplota: ");

Serial.print(t);

Serial.print(" *C ");

Serial.println();

Procedura začíná sice trochu netradičně, nicméně první čekání je zapotřebí k načtení dat z čidla. Pokud bychom se rozhodli, že data z čidla budeme číst rychleji, buď odpověď nezískáme anebo data budou špatná. Z tohoto důvodu se vyplatí si na data počkat. Čidlo DHT-11 sice moc přesné není, v teplotě měří s přesností na dva stupně celsia a ve vlhkosti může být rozdíl až 10%. Nicméně pro základní a rychlé údaje je více než dostačující. Ale i přes to se v příštím díle podíváme na čidlo DHT-22, které je skoro stejné, jako toto, jen je o dost přesnější.




1. díl o Arduinu - Historie

Arduino je open-source platforma určená pro navrhování hraček a rychlou tvorbu prototypů nejrůznějších součástek. Platforma je založena na mikro-kontrolorech ATMega od firmy Atmel a grafickém vývojovém prostředí, které dá se říci, vychází z prostředí Wiring.

2. díl o Arduinu - typy desek

V současné době je na trhu opravdu velké množství nejrůznějších desek, které lze pro projekty v Arduinu použít. Některé jsou velmi vhodné, jiné vám budou způsobovat vrásky na čele. Jde totiž sehnat desku, pro jejíž programování je zapotřebí externí převodník, protože se sama přímo nedá připojit k PC.

3. díl o Arduinu - speciální typy desek

V minulém díle jsme se zaměřili na základní typy desek, na kterých je možné stavit projekty Arduino. Nyní se však pokusím zaměřit na speciální typy desek, které svůj účel mají, dá se říci svým způsobem předurčen. Jde totiž o desky, které nebudete potřebovat tak často, jako ty předchozí, ale v případě některých je dobré vědět, že existují, protože výsledné prototypování je díky nim o dost jednodušší.

4. díl o Arduinu – Shieldy

Arduino samo o sobě v některých verzích obsahuje různá vylepšení základní verze, viz mutace Arduina Uno na desky Ethernet nebo Bluetooth. Jako příklad si uvedeme připojení k Wi-Fi u stolního počítače.

5. díl o Arduinu – Seznamujeme se s deskou UNO

Než se pustíme do jakéhokoliv programování, popíšeme si trochu jednu z těch desek, kterou budeme ze začátku používat pro projekty. Touto deskou bude Arduino Uno. Arduino Uno je základní deska, která dovede pohánět všechny projekty, na kterých se budeme s Arduinem seznamovat.

6. díl o Arduinu – Připojujeme Arduino k PC a instalujeme IDE

Vývojové prostředí pro Arduino je napsané v jazyce Java. To znamená, že je dostupné pro všechny platformy, na kterých je Java dostupná, z těch hlavních zmíním Windows, Linux a Mac OS X, protože pro ty je již připravená instalace na oficiálních stránkách Arduina.

7. díl o Arduinu – První aplikace

Po minulém díle již máme Arduino plně připojené k PC a je plně funkční. Nyní se tedy podíváme na to, jak vytvořit úplně první program, který na našem Arduinu budeme spouštět.

8. díl o Arduinu - Bastldeska

V minulém díle jsme si představili jednoduchou aplikaci. Byl to, dá se říci počátek všeho, co je zapotřebí pro to, abychom na Arduinu začali cokoliv dělat. A tak po stopách předchozího dílu se nyní podíváme na to, jak k Arduinu připojit skutečnou LED diodu, abychom nebyli omezeni pouze na tu jednu, která je připojena k pinu číslo 13 v případě desky UNO.

9. díl o Arduinu - Připojujeme LED diodu

V předminulém díle jsme si vysvětlili, jak Arduino pracuje a vytvořili jsme jednoduchý program, který nám rozblikal diodu, která byla připojena k pinu číslo 13 přímo na desce Una.

10. díl o Arduinu - Připojujeme LED diody seriově

V minulém díle jsme připojovali jen jednu LED diodu, nyní se ale podíváme na to, jak zapojit více diod tak aby svítily společně a aby jejich zapojení bylo sériové. Sériovým zapojením se rozumí, že diody budou zapojeny za sebou. To znamená, že do této větve dvou diod bude zapotřebí umístit jen jeden jediný odpor.

11. díl o Arduinu - připojujeme LED diody paralelně

Po vzoru předchozího dílu, kdy jsme připojovali dvě diody sériově s odporem na Arduino a jednoho před ním, kdy jsme připojovali pouze jednu LED diodu s odporem, se dnes podíváme na to, jak správně zapojit LED diody paralelně.

12. díl o Arduinu - Připojujeme LED diody sériovoparalelně

V minulých dílech jsme si řekli všechno o tom, jak se připojují LED diody sériově i paralelně. Nyní nastal čas, abychom diody zapojili oběma způsoby najednou. To vše z toho důvodu, že například takto jsou zapojeny diody v LED páscích, proto je možné je stříhat.

13. díl o Arduinu - Blikáme LED diody napřeskáčku

O tom, jak zapojit LED diody víme již snad vše, nepřekvapí nás sériové zapojení, nezapotíme se u paralelního a kombinace obou najednou, je už také za námi. Nyní se ale podíváme na to, jak připojit dvě diody nezávisle na sobě, budeme tedy tvořit dva okruhy, kdy každý bude ovládaný zvlášť.

14. díl o Arduinu - Knight rider

Po vzoru předchozího dílu, kdy jsme sepínali diody proti sobě na dvou okruzích, se dnes podíváme na to, jak vytvořit světlo, které mělo auto se jménem K.I.T.T. ze seriálu Knight Rider. Způsobů by se jistě našlo více, nicméně ten, který se zde pokusím popsat je podle mě ten nejjednodušší.

15. díl o Arduinu - 1. bitový sedmisegmentový displej

O LED diodách a Arduinu již víme vše, nyní tedy trochu postoupíme a pokusíme se zapojit sedmi-segmentový displej a budeme na něm zobrazovat číslo. Tento displej se tedy skládá ze sedmi segmentů, respektive z osmi, pokud počítáme i tečku, které jsou označeny písmeny od A do G.

16. díl o Arduinu - 1. bitový sedmisegmentový displej - loading effect

V minulém díle jsme si připojili jeden sedmisegmentový displej, který dovedl zobrazit pouze jedno jediné číslo. Na tomto displeji jsme pak následně zobrazili číslice od 0-9. Nyní se však podíváme na jednoduchý kód, který by nám měl vytvořit jednoduchý efekt, podobný tomu, který možná často vidíte, když něco načítáte.

17. díl o Arduinu - 2. bitový sedmisegmentový displej

V dílech minulých jsme se zaměřili na sedmisegmentový displej, který dovedl zobrazit pouze jednu číslici, zobrazili jsme na něm čísla od 0 do 9 a pak jsme si vytvořili jednoduchý načítací efekt.

18. díl o Arduinu - maticové zapojení LED diod

V minulých dílech jsme začali displeje, které byly složeny z LED diod. Zobrazovali jsme na nich čísla a v jednom případě jsme i simulovali načítání. A i přes to, že jsem kdysi řekl, že z diod co se zapojení týče, je to snad vše, budeme se v tomto díle k nim vracet, protože existuje ještě jedno zapojení, které jsme si sice představili již dříve, ale tentokrát jej ještě trochu vylepšíme.

19. díl o Arduinu - 4. bitový sedmisegmentový displej

V minulém díle jsme si něco řekli o tom, jak se zapojují LED diody do matice. Vše, co jsme se v minulém díle naučili, se nám nyní bude hodit, protože se dnes pokusíme zapojit 4bitový sedmisegmentový displej, který právě maticového zapojení využívá.

20. díl o Arduinu - Sériový monitor

Dnes si řekneme něco o sériovém monitoru. Arduino když pracuje, tak existuje možnost, díky které Arduino zpět počítači, ke kterému je připojeno po seriové lince posílá nejrůznější informace. Tyto informace mohou být buď hodnoty z nějakého čidla či čidel, informace o tom, jestli je dané relé sepnuté či konkrétní dioda svítí a mnoho dalšího.

22. díl o Arduinu - připojujeme senzor DHT-22

Minule jsme si představili senzor DHT-11, který je sice velmi oblíbený, ale zároveň ne moc přesný, proto se dnes podíváme na jeho vylepšenou verzi, tedy na senzor DHT-22. Senzor DHT-22 má tyto vlastnosti.

Speciál: Flashujeme Sonoff T1 firmwarem Tasmota přes Arduino UNO

V dnešním speciálním díle si představíme možnost, jak flashnout originální firmware ve spínačích Sonoff T1 na firmware Tasmota za pomocí desky Arduino UNO. Důvodů může být hned několik, proč to dělat takto. Tím prvním a hlavním, proč někdo tuto operaci dělá je možnost využívání spínače bez potřeby aplikace eWeLink a jejich cloudu. Tím druhým je pak to, že nemáme jiný způsob, jak spínač k PC připojit, abychom jej mohli flashnout.